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external waves were not present. The restriction on the
time step can be removed by using an implicit method [11];Numerical models of ocean circulation admit motions varying on

a wide range of time scales. These motions include fast external this approach requires that a large system of algebraic
gravity waves, which are approximately independent of depth, and equations be solved at each time step. A commonly used
slower internal motions which are fully three-dimensional. Explicit alternative is to split the governing equations into sub-
time discretizations are impractical for these systems, due to the

systems that model the fast and slow motions separately;short timesteps dictated by the fast waves. A commonly used alter-
these will be referred to as the barotropic and baroclinicnative is to confine the fast waves to a two-dimensional system,

via vertical averaging, and then to compute the remaining motions systems, respectively. Such splittings are used, for example,
explicitly with a long time step. However, this procedure can lead in [1, 5, 9]. Because the fast motions are approximately
to numerical instability if the latter system admits sufficiently large independent of z, the barotropic system is two-dimensional
residual fast motions due to an inexact splitting. In this paper we

and generally resembles the shallow water equations thatmodify a method developed by R. Bleck and L. T. Smith (J. Geophys.
model the motion of a fluid of constant density. This systemRes. C 95, 3273, 1990) in order to obtain a more precise splitting into

fast and slow subsystems. In the vertically averaged momentum can be solved explicitly with short time steps or implicitly
equation, we use the exact vertical average of the horizontal pres- with long time steps; in this case, the costs of such methods
sure gradient in place of the approximation used in op cit. We are not great, due to the restriction to two space dimen-
then apply natural time discretizations and show that the modified

sions. The baroclinic system is fully three-dimensional andsplitting produces considerable improvements in stability. Q 1997

is solved explicitly with a long time step that is appropriateAcademic Press

for resolving the slow internal motions. However, if the
splitting is inexact, then the baroclinic system can actually

1. INTRODUCTION admit some fast motions. If the fast motions are present
in the baroclinic equations to a sufficiently large degree,

The general circulation of the ocean is influenced by then the computational algorithm could be unstable when
motions that vary on a wide range of time scales. The long time steps are used to solve those equations.
major current systems typically exhibit fluid velocities on In the present paper we examine the splitting problem
the order of one meter per second; in other regions these in the context of isopycnal coordinates. Here, the vertical
velocities are generally much smaller. Other prominent coordinate is the specific volume (reciprocal of density) or
motions include external gravity waves and internal gravity some other thermodynamic quantity. Surfaces of constant
waves. External waves can propagate with velocities of up vertical coordinate are approximately material surfaces, so
to hundreds of meters per second, whereas internal waves water masses are tracked automatically by the choice of
have velocities on the order of one meter per second or coordinate system. This setting allows for the convenient
less. In the case of an external wave, the disturbance is modeling of the subtle exchanges that occur between fluid
approximately independent of the vertical coordinate, and layers. Further discussions of the advantages of isopycnal
the motion is manifested by the movement of the free coordinates are given in [1, 2, 8].
surface at the top of the fluid. On the other hand, internal Perhaps the first barotropic-baroclinic splitting for iso-
waves can be regarded as undulations of surfaces of con- pycnal coordinates was the one developed by Bleck and
stant density within the fluid. Smith [1] for the Miami Isopycnic Coordinate Ocean Model

The vast disparity of time scales poses major challenges (MICOM). Higdon and Bennett [8] recently showed that
when ocean circulation is modeled numerically. If an ex- this splitting yields unstable computational algorithms
plicit time discretization is used, then the maximum permis- when applied to a linearized two-layer model with one

horizontal dimension. This analysis includes several differ-sible time step is far smaller than would be the case if the
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ent timestepping schemes for solving the baroclinic equa- [1, 8]. Here, the vertical coordinate is taken to be the
specific volume a, or reciprocal of density; the use of thistions. In [8], the instability is attributed to the inexactness
coordinate requires an assumption that a is an increasingin the splitting. Three particular sources of inexactness are
function of height. The quantity u(x, y, a, t) 5 (u(x, y, a, t),the decomposition u 5 u 1 u9 of the velocity field, the
v(x, y, a, t)) is the horizontal velocity field; p(x, y, a, t)decomposition p 5 (1 1 h)p9 of the pressure field, and
is the pressure;the splitting of the term 2=M in the momentum equation.

The quantities u, u9, p9, and h are defined in Section 2.1
M(x, y, a, t) 5 ap(x, y, a, t) 1 gz(x, y, a, t) (2.2)of the present paper, and =M is the horizontal gradient of

the Montgomery potential; in an isopycnal setting, 2=M
provides the pressure forcing in the momentum equation. is the Montgomery potential; f is the Coriolis parameter;

z is the elevation corresponding to specific volume a; g isHowever, the analysis in [8] does not assess the relative
the acceleration due to gravity; and = 5 (­/­x, ­/­y) forimportance of the above sources of inexactness, and it does
fixed a. The notation k 3 u refers to the first two compo-not suggest an alternate splitting.
nents of (0, 0, 1) 3 (u, v, 0), namely (2v, u).In the present paper we find that the primary difficulty

Equation (2.1b) relies on the assumption that the fluidlies with the splitting of 2=M. In a controlled experiment,
is in hydrostatic balance; that is, pz 5 2ga21, or pa 5we retain the same splitting of the pressure and velocity
2ga21za . In the system (2.1) it is assumed that $ ; Da/fields and adopt a more precise splitting of the momentum
Dt 5 0, so that the density of each fluid particle remainsequation. We then find that the stability problem is essen-
constant with time. This assumption neglects effects suchtially resolved. The main step is the construction of the
as sources and sinks of heat and the diffusion of tempera-barotropic momentum equation, which is based on a verti-
ture and salinity; if the case $ ? 0 were to be allowed,cal average of the three-dimensional momentum equation.
then the terms $ua and ($pa)a would appear on the leftIn the splitting developed in [1], this equation includes a
sides of (2.1a) and (2.1c), respectively. In a realistic oceanhorizontal pressure gradient that is equivalent to the one
model one might use a different thermodynamic quantity,used in the constant-density shallow water equations. In
such as potential density or entropy, for a vertical coordi-effect, the barotropic momentum equation in [1] neglects
nate; and the governing equations might contain additionalthe variations in density over the depth of the fluid. Our
terms to account for processes related to salinity and ther-proposed alternative is to incorporate the vertical struc-
modynamics (Davis [4]). However, the system (2.1) isture more explicitly by using the exact vertical average of
suitable for illustrating the ideas underlying a barotropic-2=M. The gradient term used in [1] is an approximation
baroclinic modal splitting.to this vertical average, but we find that the difference

between the two has a major effect on the stability of the
2.1. Barotropic and Baroclinic Equationscoupled barotropic-baroclinic algorithm.

In Section 2 we develop the new splitting in the context A major goal of this paper is to develop a new treatment
of the nonlinear primitive equations. In Section 3 we ana- of the barotropic momentum equation, which is essentially

a weighted vertical average of the depth-dependent mo-lyze the stability of this splitting when applied to a linear-
mentum equation (2.1a). For a velocity field in the baro-ized flow in a two-layer fluid with one horizontal dimension
tropic system, we use the vertically averaged velocityand a flat lower boundary. In Section 4 we extend this

analysis to the case of two horizontal dimensions in a rotat-
ing reference frame with constant Coriolis parameter.

u(x, y, t) 5
1

pb (x, y, t)
Eatop

abot

u(x, y, a, t)(2pa ) da (2.3)Some numerical tests of the new splitting are described in
Section 5. A summary is given in Section 6.

used by Bleck and Smith [1]. Here pb(x, y, t) denotes the
2. DESCRIPTION OF THE SPLITTING pressure at the bottom of the fluid, and the pressure at the

top of the fluid is assumed zero. The averaging defined in
In this section we state the system of governing equations (2.3) approximates the projection onto the external mode

and describe our procedure for splitting these equations in the case of a linearized problem for which modal repre-
into barotropic and baroclinic subsystems. We consider sentations of the solution are possible (Higdon and Bennett
the primitive equations in the form [8]). However, the linearization of (2.3) does not yield an

exact projection in that case.
ut 1 (u ? =)u 1 f k 3 u 5 2=M (2.1a) A vertical averaging of (2.1a) yields the barotropic mo-

mentum equationMa 5 p (2.1b)

pat 1 = ? (upa ) 5 0 (2.1c) ut 1 f k 3 u 5 2=M 1 G, (2.4)
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where =M is defined in analogy to u, and G(x, y, t) is a so that h represents the relative perturbation in bottom
pressure. The quantity p9(x, y, a, t) is then defined by (2.6).residual term that includes the vertical average of the non-

linear terms. The nonlinear terms are not treated explicitly In [1] the pressure decomposition (2.6) is used to split
the continuity equation (2.1c); the barotropic continuitybecause particle velocities are far smaller than the veloci-

ties of external waves in oceanic flows, so nonlinear effects equation is
are unlikely to be significant in the modeling of external
motions. The quantity G also includes a term involving u

p9bht 1 = ? (p9b u) 5 0, (2.8)and pat , as the time derivative does not commute with the
vertical averaging, in general. A similar remark applies to
the horizontal gradient =, so that =M ? =(M ). and the baroclinic continuity equation is

A baroclinic momentum equation is obtained by sub-
tracting (2.4) from (2.1a) to yield

p9at 1 = ? (u9p9a) 5 2= ? (up9a) 1
p9a

p9b
= ? (p9b u). (2.9)

u9t 1 (u ? =)u 1 f k 3 u9 5 2(=M 2 =M ) 2 G, (2.5a)

where
In the derivation of (2.8) and (2.9), the quantity 1 1 h is
approximated by 1 whenever 1 1 h appears as a factor.u9(x, y, a, t) 5 u(x, y, a, t) 2 u(x, y, t). (2.5b)
Also see [8].

In the barotropic-baroclinic splitting developed in [1],The relation (2.5b) implies that the vertical average of u9
the barotropic momentum equation has the form (2.4),is zero. During numerical implementation, the enforce-
except that the term 2=M is approximated by 2a0=ment of this condition will provide values of the residual
(p9bh), where a0 is a representative value of a. The quantityterm G, which will in turn be used to force the barotropic
p9bh is the perturbation in bottom pressure; the term 2a0=momentum equation (2.4).
(p9bh) is thus equivalent to the horizontal pressure gradientIn the case of a fluid with constant density, the hydro-
that would be used for a hydrostatic fluid having constantstatic relation pz 5 2ga21 implies that the Montgomery
density a21

0 . The difference of the quantities 2a0=(p9bh)potential M 5 ap 1 gz is independent of depth. In that
and 2=M includes terms involving the vertical structurecase M(x, y, t) 5 Mtop 5 gztop , so 2=M is exactly the
of the fluid; see (2.12)–(2.13), (3.6).gradient term that appears in the constant-density shallow

water equations (Pedlosky [12]). The vertically averaged An analogy can be made with the barotropic-baroclinic
equation (2.4) thus generalizes the momentum equation splitting used in the Bryan–Cox class of z-coordinate ocean
in the shallow water system to the case of external wave models (e.g., [3, 5, 9, 13]). There, the decomposition of
motions in the variable-density system (2.1). the pressure field is given by the additive relation p(x, y,

Bleck and Smith [1] introduced a decomposition of the z, t) 5 r0 gh(x, y, t) 1 ph(x, y, z, t), where r0 is a reference
pressure field given by density, h is the perturbation in the elevation in the free

surface, and ph is the pressure relative to the mean free
p(x, y, a, t) 5 (1 1 h(x, y, t))p9(x, y, a, t), (2.6) surface. To a close approximation, the term r0 gh(x, y, t)

represents the effects of external gravity waves, and the
where p9 is intended to represent the pressure field due term ph(x, y, z, t) represents the effects of internal motions.
to static effects and slow internal motions, while h is a These terms are thus regarded to vary on the fast and slow
dimensionless quantity that represents the fast external time scales, respectively. In the Bryan–Cox class of models,
signal. The quantity p9b at the bottom of the fluid is assumed the horizontal pressure forcing is represented by the Bous-
to be independent of time. Equation (2.6) is based on the sinesq approximation 2r21

0 =p. The barotropic momentum
idea that an external signal causes the thickness of each equation is based on a vertical average; this equation thus
fluid layer to change by approximately the same proportion includes a term 2g=h, which is exact for a hydrostatic fluid
[1, 8]. Typically uhu ! 1. The preceding remarks do not of constant density, plus some terms that represent the
define p9 and h uniquely; one can specify these quantities vertical structure of the fluid. The latter terms vary on the
by defining p9b(x, y) to be the pressure at the bottom of slow time scale. However, as seen in the following section,
the fluid when the system is in some reference state, such the analogous terms for the isopycnal case can include
as an equilibrium state, and then letting quantities varying on both the fast and slow time scales.

In the additive pressure splitting p(x, y, z, t) 5 r0gh
(x, y, t) 1 ph(x, y, z, t), the effects of the fast externalh(x, y, t) 5

pb(x, y, t)

p9b(x, y)
2 1, (2.7)

motions are represented in terms of the elevation of the
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free surface and are thus regarded as independent of z. velocity. At interface r the Montgomery potential satisfies
the jump conditionThis statement is highly accurate. However, the situation

is different if the pressure is represented in isopycnal coor-
dinates as p(x, y, a, t). A point of constant (x, y, a) is a Mr 5 Mr11 1 pr Dar ; (2.10)
material point that moves up and down with the motions
of the fluid; for external motions the pressure at that point this is a discrete analogue of (2.1b).
is approximately due to the vertical distance from the free In this context, the vertical average of =M is given by
surface, so variations in this pressure are due to the thick-
ening or thinning of the fluid layer above (x, y, a), not the
variation of the free surface elevation relative to its mean. =M(x, y, t) 5 OR

r51

Dpr

pR
=Mr , (2.11)

In this case the multiplicative decomposition (2.6) of
p(x, y, a, t) is appropriate, as described earlier.

which is a discrete analogue of the averaging by integrationThe stability of the barotropic-baroclinic splitting for
discussed in Section 2.1. A barotropic velocity u is definedthe Bryan–Cox class of models has apparently not been
similarly. The weighting coefficients satisfy the conditionanalyzed, but no stability problems with this splitting have
oR

r51 Dpr/pR 5 1, since p0 5 0. Various explicit formulasbeen reported (John Dukowicz, personal communication).
for (2.11) are possible; the following is one example.In the present paper we analyze the usage of exact vertical

Recursive application of the interface condition (2.10)averaging in the case of isopycnal coordinates, and we
yields an expression for Mr in terms of the Montgomeryshow that this produces major improvements in stability
potential MR in the bottom layer; we then obtaincompared to using the gradient term from the constant-

density shallow water equations.
=Mr 5 =MR 1 DaR21 =pr21 1 ? ? ? 1 Dar=pr .

2.2 Vertical Discretization; Representation of =M
When this result is inserted into (2.11), rearrange the sum

We next describe a discretization with respect to the so that the terms corresponding to a given layer are
vertical coordinate a. In that context, we develop a repre- grouped together. The result is
sentation of =M that illustrates how =M includes quanti-
ties varying on the fast time scale and some other quantities
varying on the slow time scale. In the analysis given later, =M 5 =MR 1 OR21

r51
FDar(=pr) Or

j51

Dpj

pR
G .

the fast and slow terms are handled separately.
In the following description of vertical discretization,

But or
j51 Dpj 5 pr , sothe formulas can be regarded either as approximations

for a continuously stratified fluid obtained from finite
difference approximations with respect to a, or as exact

=M 5 =MR 1
1

pR
OR21

r51
Dar= S1

2
p2

rD .statements about a discretely stratified fluid consisting of
a stack of homogeneous fluid layers (Higdon and Bennett
[8]). We use terminology motivated by the latter viewpoint.

The pressure decomposition pr 5 (1 1 h)p9r then yieldsSuppose that the fluid consists of R layers, and let ar

denote the specific volume of layer r, where the index r 5 1
=M 5 =(aR p9Rh) 1 =(aR p9R 1 gzbot )

(2.12)
refers to the uppermost layer and the index r 5 R refers
to the bottom layer. Let pr (x, y, t) denote the pressure at
the bottom of layer r, and denote the pressure at the free 1

1

(1 1 h)p9R
=[(p9R )2(1 1 h)2Q],

surface by p0 5 0. The quantity Dpr 5 pr 2 pr21 then
denotes the pressure increment across layer r and can
be regarded as a measure of layer thickness. The baro- where
clinic quantity p9r is defined via the pressure splitting
pr(x, y, t) 5 (1 1 h(x, y, t))p9r(x, y, t). The increment
in a across the r th interface will be denoted by Dar 5 Q(x, y, t) 5

1
2 OR21

r51
Sp9r

p9R
D2

Dar . (2.13)
ar 2 ar11 . Let Mr(x, y, t) and ur (x, y, t) denote the
Montgomery potential and horizontal velocity field,
respectively, in layer r. In a layer of constant density, the The quantity h varies on the fast barotropic time scale,
Montgomery potential is independent of depth; for conve- the quantity Q varies on the slow baroclinic time scale,

and the remaining quantities are stationary.nience we assume that this is also the case for the horizontal
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2.3. A Time Discretization In the following discussion of time discretization, we do
not indicate discretizations with respect to the horizontal

We next consider discretization with respect to time. In
space variables, as the emphasis is on the time stepping.

this discussion, a significant issue is the implementation
Superscripts are used to denote the time index.

of the residual term G in (2.4)–(2.5). For the baroclinic
First update the continuity equation (2.14) with the for-

equations, we describe a timestepping scheme based on the
ward step

forward–backward method. When applied to the purely
baroclinic equations in the linearized case, this method is
stable and nondissipative, provided that the Courant–

Dp9 n11
r 5 Dp9 n

r 1 Dt S2= ? (un
r Dp9 n

r ) 1
Dp9 n

r

p9R
= ? (p9R un)D .Friedrichs–Lewy condition is satisfied. The subsequent sta-

bility analysis is based mainly on this method. However,
(2.17)the leapfrog scheme can also be used in a similar manner,

and a stability analysis using that method is included in
the later discussion. Then use the values of p9 at time tn11 to solve the barotropic

We assume that the solution is known at time tn , and equations, as described earlier. The barotropic momentum
we wish to compute the solution at time tn11 5 tn 1 Dt, equation (2.4) includes the term G; when the barotropic
where Dt is a long time step that is appropriate for solving equations are solved for tn , t # tn11 , we use the quantity
the slow baroclinic equations explicitly. Over the time in- Gn(x, y) that was obtained when the baroclinic momentum
terval tn # t # tn11 , the fast barotropic equations could be equation was advanced from time tn21 to time tn. If the
solved implicitly with time step Dt, or they could be solved barotropic equations are solved explicitly via subcycling,
explicitly by subcycling through many small substeps of then the quantity G is held constant over the barotropic
the interval tn # t # tn11 . substeps. The computation of G is described below.

In the latter case, the term =M can be implemented as Before updating the momentum equation (2.15), we cal-
follows. First suppose that the baroclinic continuity equa- culate Mr at time tn11 for 1 # r # R. For the bottom layer,
tion (2.9) has already been updated, so that the values of we have Mn11

R 5 aR(1 1 hn11)p9R 1 gzbot . Values of M in
p9 at time tn11 are available. Baroclinic quantities appearing the other layers can be obtained by repeated application
in =M can then be interpolated (e.g., linearly) with respect of the jump condition (2.10); this process uses the quanti-
to t between times tn and tn11 . On the other hand, baro- ties pn11

r 5 (1 1 hn11)p9n11
r .

tropic quantities are updated at each substep. For the sake When the momentum equation (2.15) is updated, the
of efficiency, one does not compute a vertical average of Coriolis terms and nonlinear terms can be handled by the
the three-dimensional field =M at each barotropic substep; following predictor–corrector process, which is a general-
instead, an explicit representation of =M enables one to ization of the classical Heun method [10, 14]. In Section
work strictly with two-dimensional fields during the sub- 4 we show that this approach provides for a stable treat-
cycling. ment of the Coriolis terms in the linearized case. A pre-

We next consider the baroclinic equations. For a verti- dicted velocity is defined by
cally discrete medium, the baroclinic continuity equation
in layer r has the form

u9 pred
r 5 u9 n

r 1 Dt (2(un
r ? =)un

r 2 f k 3 u9 n
r

(2.18)­Dp9r

­t
1 = ? (urDp9r ) 5

Dp9r

p9R
= ? (p9R u) (2.14) 2 (=M n11

r 2 =M n11 )) 2 Gpred Dt.

for 1 # r # R, and the baroclinic momentum equation is Here, we use updated values involving M, but in the non-
linear and Coriolis terms we use old values of velocity. The
quantity Gpred is not yet defined; this quantity is specified by­u9r

­t
1 (ur ? =)ur 1 f k 3 u9r 5 2(=Mr 2 =M ) 2 G. (2.15)

invoking the zero-mean condition (2.16) to obtain

Here u9r (x, y, t) 5 ur 2 u, in analogy with (2.5b), and
Dp9r 5 p9r 2 p9r21. In the momentum equation, the quantity

0 5 OR
r51

Dp9 n11
r

p9R
[u9 pred

r ]G will be regarded as a forcing term that drives the baro-
clinic velocity field so that it has vertical mean zero, in the
sense that

5 OR
r51

Dp9 n11
r

p9R
[u9 n

r 1 Dt (2(un
r ? =)un

r 2 f k 3 u9 n
r

OR
r51

Dpr

pR
u9r 5 OR

r51

Dp9r (x, y, t)

p9R(x, y)
u9r (x, y, t) 5 0. (2.16)

2 (=M n11
r 2 =Mn11 ))] 2 Gpred Dt.
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The quantity Gpred Dt can be inserted back into (2.18) to denote pressure increments across layer r, for r 5 1 and
r 5 2. Let ur denote the horizontal velocity in layer r, anddetermine the predicted velocity. An equivalent process

is the following: obtain a tentative baroclinic velocity by let Mr denote the perturbation in Montgomery potential
in that layer. The linearization of the system (2.1), as ap-using Eq. (2.18) without the term Gpred Dt; compute the

vertical mean of the result, using weighting coefficients plied to the present setting, is then
from time tn11 ; and then subtract this mean from the tenta-
tive velocity to obtain a field u9 pred

r that satisfies the condi- ­ur

­t
5 2

­Mr

­x
, r 5 1, 2, (3.1a)tion (2.16).

We then obtain corrected velocities by using weighted
M1 5 M2 1 p1Da (3.1b)averages of the nonlinear and Coriolis terms as stated in

terms of u9 n
r and u9 pred

r . The residual term, denoted Gn11
­

­t
(Dpr ) 1 Dp̃r

­ur

­x
5 0, r 5 1, 2, (3.1c)Dt in the present case, is treated in the same manner as

before. The correction step is then given by the relations

The boundary condition at the bottom of the fluid is M2 5
u9 corr

r 5 u9 n
r 1 aDt (2(upred

r ? =)upred
r 2 f k 3 u9 pred

r ) a2 p2 .
The linearization of the pressure splitting (2.6) of Bleck

1 bDt(2(un
r ? =)un

r 2 f k 3 u9 n
r )

and Smith [1] can be written in the form
2 Dt(=Mn11

r 2 =M n11 ) for 1 # r # R
(2.19)

Dpr 5 Dp9r 1 hD p̃r , (3.2)
Gn11 Dt 5 OR

r51

Dp9 n11
r

p9R
u9 corr

r

or equivalently, pr 5 p9r 1 h p̃r , with p92 5 p9b being indepen-
dent of t (Higdon and Bennett [8]). In (3.2) it is assumedu9 n11

r 5 u9 corr
r 2 Gn11 Dt,

that h 5 0 corresponds to the equilibrium state. These
constraints do not determine Dp91, Dp92, and h uniquely for

where upred
r 5 u9 pred

r 1 un11 and a 1 b 5 1. The choice of given values of Dpr and D p̃r . However, unique determina-
parameters a and b is discussed in Section 4, along with tion is possible if, in addition, one assumes p92 5 0. In that
the effects of these parameters on stability. In the first case one has
equation in (2.19), the quantities involving un

r , u9 n
r , and M

were already computed for the prediction step and need
h(x, t) 5 p2/p̃2 , (3.3)not be recomputed for the correction step.

and h then represents the relative perturbation in the bot-3. A LINEARIZED, TWO-LAYER,
tom pressure; this is consistent with the definition given inONE-DIMENSIONAL MODEL
(2.7) for the nonlinear case.

Here we apply the preceding strategy to a simple one- Define a barotropic velocity u(x, t) by the weighted
dimensional setting and analyze the stability of the re- vertical average,
sulting algorithm. In Section 4 we extend the analysis to
the case of two horizontal dimensions with a rotating refer-

u(x, t) 5
D p̃1

p̃2

u1 1
D p̃2

p̃2

u2 , (3.4)ence frame.

3.1. Governing Equations
which is a linearization of the kind of averaging definedConsider a flow in one horizontal dimension with a flat
in (2.11). An average M (x, t) is defined in an analogouslower boundary and suppose that the flow is linearized
manner. A vertical averaging of Eq. (3.1a) then yieldsabout an equilibrium state where the velocity is zero and

the pressure depends only on depth. We also suppose that
the fluid consists of two layers. Let a1 and a2 denote the ­u

­t
5 2

­M
­x

. (3.5)
specific volumes of the upper and lower layers, respec-
tively, with Da 5 a1 2 a2 . 0. In the present linearized
setting, p0 5 0, p1 , and p2 5 pb denote the perturbations Equation (3.5) is the linearization of the general barotropic

momentum equation (2.4), in the case of one horizontalin pressure at the free surface, bottom of upper layer,
and bottom of lower layer, respectively. Values of the dimension; in the present simplified case, the residual term

G is zero, and the vertical averaging operation commutesequilibrium pressures p̃0 5 0, p̃1 , and p̃2 5 p̃b are defined
analogously. Then Dpr 5 pr 2 pr21 and D p̃r 5 p̃r 2 p̃r21 with differentiation with respect to x and t. The interface
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condition (3.1b) and bottom boundary condition M2 5 where
a2 p2 imply

d(x, t) 5
Dp91 (x, t)

D p̃1M (x, t) 5 a2 p2 1
Dp̃1

p̃2

p1Da ; (3.6a)

and
the pressure splitting (3.2) and the assumption p92 5 0
then yield

c1 5 SD p̃1 D p̃2 Da

p̃2
D1/2

. (3.9)

M (x, t) 5 a2 p̃2h 1
D p̃1

p̃2

(Da)(Dp91 1 hD p̃1 ). (3.6b)
The quantity c1 is the speed of internal gravity waves in a
fluid with two layers.

For a barotropic momentum equation, we use Eq. (3.5) A comparison of (3.5) and (3.6b) implies that the baro-
with M (x, t) given by (3.6b). tropic momentum equation can be written in the form

The barotropic momentum equation of Bleck and Smith
[1] uses the gradient term 2a0=(p9bh) instead of 2=M ; ­u

­t
1 c2

0
­h
­x

5 2cc2
0

­d
­x

, (3.10)if the parameter a0 is chosen to be a2 , then this term
becomes 2­/­x(a2 p̃2h) in the present linearized case. The
term 2­/­x(a2 p̃2h) is exact for a single-layer fluid having where
density 1/a2 ; the terms in (3.6b) that involve Da account
for the effects of density variations in a two-layer fluid.

Next consider the baroclinic momentum equation. Let c0 5 Sa2 p̃2 1
(D p̃1 )2Da

p̃2
D1/2

(3.11)
u9r 5 ur 2 u for r 5 1, 2. A comparison with (3.4) shows
that the weighted average of u91 and u92 is zero, so it suffices
to consider u91 only. Subtracting (3.5) from (3.1a) yields denotes the speed of external gravity waves, and

­u91

­t
5 2

­

­x
(M1 2 M ). c 5

D p̃1

D p̃2
Sc1

c0
D2

5 O(Da/a2 ). (3.12)

Equations (3.1b), (3.2), and (3.6a) then imply The linearization of the barotropic continuity equation
(2.8) is

­u91

­t
5 2

D p̃1 D p̃2 Da

p̃2

­

­x SDp91

D p̃1

1 hD .
­h
­t

1
­u
­x

5 0. (3.13)

The linearization of the baroclinic continuity equation
3.2. Computational Algorithm(2.14) is

We now apply the time discretization described in Sec-
tion 2.3 to the barotropic-baroclinic system (3.8), (3.10),­

­t
(Dp9r ) 1 D p̃r

­u9r

­x
5 0 (3.13). In the present subsection we make a precise state-

ment of the algorithm, and in the following subsections
we analyze stability.

in the case of one horizontal dimension. The sum Dp91 1 In the stability analysis given later, we assume that the
Dp92 5 p92 is a known quantity, so it suffices to consider the system is defined for 2y , x , y and t . 0. We then use
upper layer only. The baroclinic equations can then be a Fourier transform with respect to x and examine the
written in the form evolution of the system through time. In the following

discussion, we state the algorithm directly in terms of Fou-
rier transforms. For definiteness, we use centered second-­d

­t
1

­u91

­x
5 0 (3.8a) order finite differences on a staggered grid when discretiz-

ing with respect to space. Values of h and Dp91 are defined
at points with spacing Dx, and grid points for u and u91 are­u91

­t
1 c2

1
­d
­x

5 2c2
1

­h
­x

, (3.8b)
located halfway between the points for h and Dp91 . Alter-
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nate spatial discretizations can be considered by using dif- shows that the solution of the barotropic system (3.16) at
time tn11 isferent definitions of the symbol K in (3.15).

Let d̂ n(k), û91
n(k), and ĥn(k) denote the Fourier trans-

forms of d, u91 , and h with respect to x at time tn , with k Sû n11/c0

ĥn11 D5 Y(kDx) Sû n/c0

ĥn D1 V(kDx)d̂ n 1 W(kDx)d̂ n11
being the dual variable for the Fourier transform. The
forward–backward method defined in (2.17)–(2.19), as ap- (3.17a)
plied to the linearized baroclinic system (3.8), can then be
written in the form where

Y(kDx) 5 S cos u 2i sin u

2i sin u cos u
D , (3.17b)d̂ n11 5 d̂ n 2 (iKc1Dt)

c1
(3.14a)

V and W are the column vectors
c1

5
c1

2 (iKc1Dt)(d̂ n11 1 ĥn11 ). (3.14b)

û91
n

û91
n11 û91

n

The action of the spatial differencing is represented by
V(kDx) 5 c S2i(sin u 2 (1 2 cos u)/u)

cos u 2 (sin u)/u
D

(3.17c)
the symbol

W(kDx) 5 c S2i(1 2 cos u)/u

(sin u)/u 21
D,

iK 5
(eikDx/2 2 e2ikDx/2 )

Dx
5 i

sin(kDx/2)
(Dx/2)

, (3.15)
and u 5 Kc0 Dt. Recall c 5 O(Da/a2 ), from (3.12). For
fixed values of the model parameters D p̃1 , D p̃2 , a1 , a2 ,
and Courant number c1 Dt/Dx, the quantity u is a function

and the dependent variables are written in nondimensional of the dimensionless wavenumber kDx (cf. (3.9), (3.11),
form for the sake of later analysis. A calculation shows that (3.15)).
if ĥ 5 0, then the system (3.14) is stable and nondissipative, We now combine (3.14) and (3.17) into a single vector
provided that the Courant–Friedrichs–Lewy condition equation. Let
c1 Dt/Dx , 1 is satisfied.

We assume that the barotropic equations (3.10), (3.13) (3.18)vn(k) 5 (d̂ n û91
n/c1 û n/c0 ĥn)T

are discretized with respect to x but are solved exactly with
respect to t on the time interval tn # t # tn11 . The latter denote a column vector consisting of four unknowns. The
assumption is made partly for simplicity and partly in order coupled barotropic-baroclinic algorithm can then be writ-
to isolate the effects on stability of the modal splitting and ten in the form
baroclinic time stepping.

We consider the transformed barotropic equations in E1vn11 5 E0vn, (3.19a)
the form

where

­

­t S û
c0
D1 (iKc0 )ĥ 5 2c(iKc0 )d̂(k, t) (3.16a)

E1 5 1
1 0 0 0

iKc1Dt 1 0 iKc1 Dt

2W1 0 1 0

2W2 0 0 1
2 (3.19b)­ĥ

­t
1 (iKc0 )

û
c0

5 0, (3.16b)

where d̂(k, t) denotes the linear interpolant d̂(k, t) 5 and
d̂ n(k) 1 (t 2 tn )(d̂ n11(k) 2 d̂ n(k))/Dt. This interpolant is
an analogue, in the present case, of the interpolation of
baroclinic quantities discussed in Section 2.3. Addition and

E0 5 1
1 2iKc1 Dt 0 0

0 1 0 0

V1 0 Y11 Y12

V2 0 Y21 Y22

2 . (3.19c)subtraction of (3.16a) and (3.16b) produces scalar equa-
tions for the quantities û/c0 1 ĥ and û/c0 2 ĥ, which are
solved by standard methods. Impose the initial conditions
û 5 û n and ĥ 5 ĥn at time t 5 tn , and then let t 5 tn11 to
obtain the solution at the new time level. A calculation The matrices E1 and E0 are functions of kDx.
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3.3. Characteristic Polynomial product of these characteristic polynomials, plus some
terms involving c 5 O(Da/a2 ) that result from the coupling

In this and the following subsection we analyze the sta-
between the baroclinic and barotropic subsystems. In par-

bility of the algorithm defined by (3.19). For such an algo-
ticular, we obtain

rithm to be stable, all solutions of the system (3.19) would
have to be bounded as n R 1y, for each wavenumber k.

p(l) 5 (l2 2 ãl 1 1)(l2 2 b̃l 1 1) 1 f(kDx)l(l 2 1)2,We will show that this is not the case; however, the unstable
(3.22a)behavior is confined to wavenumbers lying in a finite num-

ber of extremely narrow intervals. Outside these intervals,
the algorithm is stable and nondissipative. This represents where
a considerable improvement over the splitting of Bleck
and Smith [1], as analyzed by Higdon and Bennett [8]; for ã(kDx) 5 2 2 (1 2 c)(Kc1Dt)2

that splitting, unstable behavior is found for all but finitely
5 2 2 4(1 2 c)n2 sin2(kDx/2)many wavenumbers, and the growth rates are larger than

those found in the exceptional cases for the present split-
b̃(kDx) 5 2 cos u 5 2 cos(Kc0Dt)

(3.22b)ting. In some numerical computations described in Section
5, good results are obtained with the splitting developed 5 2 cos(2n(c0/c1 ) sin(kDx/2))
in the present paper, as applied to a nonlinear ocean model
that includes physically appropriate dissipative mecha- f(kDx) 5 c3/2 ? 2n sin(kDx/2) sin(Kc0Dt)SDp̃2

Dp̃1
D1/2

nisms.
We begin by considering solutions of (3.19) having the

5 O(Da/a2 )3/2
form vn 5 lnq, where l is a complex scalar and q is a
nonzero vector having four components. The superscript

and n 5 c1Dt/Dx denotes the Courant number. The termon l is an exponent, and the superscript on v is a time
in ã involving c represents some of the effects of the cou-index. The form vn 5 lnq is a nontrivial solution of the
pling, and the remainder of the coupling is represented bydifference equation (3.19) if and only if l and q satisfy the
the term involving f(kDx). The polynomial l2 2 ãl 1 1,eigenvalue problem
except for the term involving c, is the characteristic polyno-
mial for the purely baroclinic equations, and the polyno-lE1q 5 E0 q, q ? 0. (3.20)
mial l2 2 b̃l 1 1 is associated with the barotropic equa-
tions. The roots of these quadratic polynomials indicate

A number l is an eigenvalue if and only if det(lE1 2 the time dependence, in the form ln, of the baroclinic and
E0 ) 5 0. We thus consider the characteristic polynomial barotropic subsystems, respectively. For convenience, we

do not denote explicitly the dependence of p(l) on kDx.
p(l) 5 det(lE1 2 E0 ) Because of periodicity, we can restrict attention to the case

ukDxu # f.
If, for some kDx, the polynomial p in (3.22a) has a root

l with ulu . 1, then the difference equation (3.19) admits
5 1

l 2 1 iKc1 Dt 0 0

l(iKc1 Dt) l 2 1 0 l(iKc1 Dt)

2lW1 2 V1 0 l 2 cos u i sin u

2lW2 2 V2 0 i sin u l 2 cos u
2 , solutions of the form vn 5 lnq that are unbounded as

n R 1y. On the other hand, if ulu # 1 for each root l,
and if linear independence of eigenvectors implies that all
solutions of (3.19) are linear combinations of solutions of(3.21)
the form lnq, then all solutions of (3.19) are bounded as
n R 1y.

where V1 , V2 , W1 , and W2 denote components of the vec- Higdon and Bennet [8] analyzed the splitting of Bleck
tors V and W defined in (3.17c); u 5 Kc0Dt, and c and K and Smith [1] in the same setting considered here. In that
are defined in (3.12) and (3.15), respectively. analysis the characteristic polynomial has the form

The determinant of the 2 3 2 submatrix lying in the
upper left corner of lE1 2 E0 is the characteristic polyno-

(l2 2 al 1 1)(l2 2 bl 1 1) 1 c(kDx)(l 1 1)(l 2 1)2,mial for the forward–backward method (3.14) for the baro-
(3.23)clinic equations, when the forcing term ĥn11 is removed.

Similarly, the determinant of the 2 3 2 submatrix lying in
the lower right corner is associated with the barotropic where the coefficient a is the same as the coefficient ã in

(3.22b), except for the term involving c; b 5 b̃ exactly;system (3.16), when the forcing from baroclinic variables
is removed. A calculation shows that p(l) consists of the c(kDx) . 0, except at finitely many values of kDx; and
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c(kDx) 5 O(Da/a2 ), instead of O(Da/a2 )3/2. The constant motions. On the other hand, the coefficient b̃ oscillates
between 2 and 22 many times, since c0/c1 @ 1. The rootsterm in (3.23) is 1 1 c(kDx), which is greater than 1 except

for finitely many values of kDx; the essence of the proof of pb therefore move around the unit circle many times;
these roots are associated with fast barotropic motions. Asof instability in [8] is that the product of the roots is equal

to the constant term, so at least one of the roots must have kDx varies from 0 to 6f, the roots of pb intersect the roots
of pa if and only ifabsolute value greater than 1. In contrast, the constant

term in (3.22a) is 1.

ã(kDx) 5 b̃(kDx). (3.25)3.4. Analysis of Eigenvalues

In order to characterize the stability properties of the
In that case, the fourth-degree polynomial pa(l)pb(l) has

algorithm defined in (3.19), we analyze the roots of the
multiple roots on the unit circle. For all other values of

characteristic polynomial p defined in (3.22). In the follow-
kDx, the polynomial pa(l)pb(l) has four distinct roots on

ing discussion we make the physically realistic assumption
the unit circle.

Da/a2 ! 1, so that c ! 1 and c1/c0 ! 1 (cf. (3.9), (3.11),
The characteristic polynomial p in (3.24a) is a small

(3.12)); in the ocean, the vertical variation of density has
perturbation of the polynomial pa(l)pb(l), since

an upper bound on the order of one percent and is often uf(kDx)u 5 O(Da/a2 )3/2 ! 1. A central question is whether
much smaller (Gill [6]).

this perturbation causes the roots to leave the unit circle.
The characteristic polynomial p can be written in the

The following lemma implies some constraints on the man-
form

ner in which the roots can migrate.

LEMMA 3.2. Suppose that l is a root of the polynomialp(l) 5 pa (l)pb(l) 1 f(kDx)l(l 2 1)2, (3.24a)
p with ulu . 1, for some kDx. If l is not real, then the set
of all roots of p is hl, 1/l, l, 1/lj. If l is real, then 1/l is

where
also a root, and the other two roots are either complex
conjugates on the unit circle or are real roots that are recipro-
cals of each other.pa(l) 5 l2 2 ãl 1 1

(3.24b)
Proof. The symmetry of the coefficients in (3.24) im-pb(l) 5 l2 2 b̃l 1 1.

plies that the equation p(l) 5 0 can be written in the form

The polynomials pa and pb are associated with the baro-
clinic and barotropic equations, respectively. We first ex- l4 1 Al3 1 Bl2 1 Al 1 1 5 0
amine the roots of pa(l)pb(l), and we then examine the
effects of adding the term f(kDx)l(l 2 1)2.

for suitable real coefficients A and B that depend on kDx.
Division by l4 reveals that 1/l is a root, due to the symme-LEMMA 3.1. If the Courant–Friedrichs–Lewy condition
try. Complex conjugation shows that l and 1/l are alson 5 c1 Dt/Dx , 1 is satisfied, then the roots of pa and pb
roots. If ulu 5 1, then 1/l 5 l, and no new information ishave absolute value equal to 1, for all values of kDx.
obtained here. However, if ulu . 1 and l is complex, then

Proof. If kDx 5 0, then ã 5 2, and l 5 1 is a double the roots discussed here are distinct, and the entire set of
root of pa . If 0 , ukDxu # f, then uãu , 2, since n , 1. In roots is then hl, 1/l, l, 1/lj. If ulu . 1 with l real, then
that case, the roots of pa are complex conjugates l1 and the set of roots includes 1/l. This completes the proof.
l2 5 l1 with nonzero imaginary part. The product of these

Figure 3.1 illustrates the case where ulu . 1 and l isroots is the constant term, so 1 5 l1 l2 5 l1l1 5 ul1u2 5
complex. The roots l and 1/l lie along a ray through theul2u2. An explicit calculation shows that the roots of pb are
origin in the complex plane, and the roots l and 1/l lieexp(iu) and exp(2iu), with u 5 Kc0Dt, for any value of n.
along the ray having an angle of opposite sign. We nextThis completes the proof.
estimate the maximum magnitudes of perturbations of

As kDx varies from 0 to 6f, the coefficient ã varies from roots.
2 downward to a minimum that is greater than 22. This
coefficient is equal to the sum of the roots of pa , and LEMMA 3.3. Suppose that the term f(kDx)l(l 2 1)2 is

added to the polynomial pa(l)pb(l) to obtain p(l) inthus is equal to twice the real part of each root; the roots
therefore move from l 5 1 around the unit circle, in oppo- (3.24a), for given kDx. Simple roots of pa(l)pb(l) are per-

turbed by at most O(Da/a2)3/2, and double roots are per-site directions, toward the point l 5 21 without reaching
l 5 21. These roots are associated with slow baroclinic turbed by at most O(Da/a2)3/4.
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D1 , D1 , D2 , and D2 are disjoint. The polynomial p would
then have at least six distinct roots, which is impossible
since p has degree four. Therefore each root of p must lie
on the unit circle. This completes the proof.

Next suppose that the disks D1 , D1 , D2 , and D2 are not
disjoint, but continue to assume that none of these disks
intersect the real axis. The preceding analysis leaves open
the possibility that the roots could leave the unit circle in
this case; we now analyze whether this actually takes place.

Intersection of disks is possible if the roots of pa and pbFIG. 3.1. Illustration of roots of the characteristic polynomial (3.24).
coincide or if the roots are distinct but sufficiently close.If the roots leave the unit circle and are not real when the perturbation
In order to provide a unified treatment of these two possi-f(kDx)l(l 2 1)2 5 O(Da/a2 )3/2 is added to pa(l)pb(l), then they must

move into the configuration illustrated here. This can happen only if the bilities, we consider the polynomial
unperturbed roots are sufficiently close. This explains why the graph in
the upper frame of Fig. 3.2 is exactly flat, except for a few narrow spikes. p(l, t) 5 pa(l)pb(l) 1 tf(kDx)l(l 2 1)2

for 0 # t # 1. The case t 5 0 yields the unperturbed
polynomial pa(l)pb(l), and the case t 5 1 yields p(l). IfProof. Let l1 , l1 , l2 , and l2 denote the roots of

pa(l)pb(l) 5 0. The equation p(l) 5 0 can then be written the roots of pa and pb are distinct, then for sufficiently
small t the roots l of p(l, t) 5 0 are distinct and lie exactlyin the form
on the unit circle; this follows from Lemma 3.4, with disks
having radii that are scaled by Ït . Now let t0 denote(l 2 l1 )(l 2 l1)(l 2 l2 )(l 2 l2 )
the largest number in the interval (0, 1] such that p(l, t)

5 2f(kDx)l(l 2 1)2 (3.26)
has distinct roots l on the unit circle for all t satisfying
0 , t , t0 . If t0 5 1, then the roots of p(l) lie on the unit5 O(Da/a2 )3/2.
circle, by continuity. Otherwise, observe that p(l, t0 ) has
double complex roots l0 and l0 on the unit circle, andConsider, for example, the perturbation in l1 . If l1 is a

simple root, then Eq. (3.26) implies l 2 l1 5 O(Da/a2 )3/2,
where the denominator in the bounding constant involves p(l) 5 p(l, t0 ) 1 (1 2 t0 )f(kDx)l(l 2 1)2

the distance between l1 and the other roots. If kDx varies
5 (l 2 l0 )2(l 2 l0 )2 1 (1 2 t0 )f(kDx)l(l 2 1)2.

so that another root approaches l1 , then this estimate
breaks down; for the case of a double root, a similar esti-

Let l0 1 « denote a root that is a perturbation of l0 ; we
mate for (l 2 l1 )2 yields l 2 l1 5 O(Da/a2 )3/4. This

then have « 5 O(Da/a2 )3/4. Substitution into the equation
completes the proof.

p(l) 5 0, followed by a calculation, shows that the quantity
(«/l0 )2 alternates in sign between consecutive values ofWe next examine whether the roots leave the unit circle

when the term f(kDx)l(l 2 1)2 is added to pa(l)pb(l). kDx for which the roots of pa and pb coincide. In the case
where «/l0 is real, the perturbed root leaves the unit circle.Centered at each of the roots of pa(l)pb(l) is a disk of

radius O(Da/a2)3/4 which contains a root of the polynomial In the case where «/l0 is imaginary, the perturbation lies
at right angles to the root and is thus tangent to the unitp; this is a consequence of Lemma 3.3. Denote these disks

by D1 , D1 , D2 , and D2 , respectively. circle; there are two such perturbations « pointing in oppo-
site directions. An application of Lemma 3.2 then shows

LEMMA 3.4. Suppose that, for given kDx, the disks D1 ,
that the roots lie exactly on the unit circle.

D1 , D2 , and D2 are disjoint and none of these disks intersect
The roots of pa and pb coincide for those values of kDx

the real axis. In this case, all of the roots of p(l) 5 0 must
for which ã(kDx) 5 b̃(kDx). We have thus shown that in

lie exactly on the unit circle.
a narrow neighborhood of every other such point, there
exist perturbed roots having absolute value greater thanProof. Suppose that one of the roots of p does not lie

on the unit circle. Denote this root by e, and without loss 1. At the other points, the perturbed roots remain on the
unit circle exactly.of generality assume that e lies in disk D1 . It follows from

Lemma 3.2 that e, 1/e, e, and 1/e are distinct roots of p. We now estimate the widths of the intervals (in kDx)
on which the roots of p can have modulus greater than 1.The root e lies in the disk D1 , and the roots 1/e and 1/e

lie along radial lines through e and e, respectively. How- In the following, we sketch the main ideas and omit the
details of calculations. Here, we continue to assume thatever, the disks D2 and D2 also contain roots of p. These

roots must be distinct from he, 1/e, e, 1/ej, since the disks the disks D1 , D1 , D2 , and D2 do not intersect the real axis.
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In order for a root of p to leave the unit circle, there must which ulu . 1, so the difference equation (3.19) admits
solutions that are unbounded as n R 1y. On the otherbe some overlap among the disks D1 , D1 , D2 , and D2 .

That is, a root of pa and a root of pb must differ by at hand, if kDx lies outside all of these neighborhoods, then
ulu 5 1 for all roots l. Furthermore, the preceding analysismost O(Da/a2 )3/4. If neighborhoods of l 5 61 are

excluded, then this condition is equivalent to uã 2 b̃u 5 shows that the roots are distinct in this case. Eigenvectors
corresponding to distinct eigenvalues are linearly indepen-O(Da/a2 )3/4, since the roots of pa and pb have real parts

ã/2 and b̃/2, respectively. We then need to determine the dent, so every solution of (3.29) can be written as a linear
combination of special solutions of the form lnq withwidth of an interval on which the quantity uã 2 b̃u can vary

from zero to (Da/a2 )3/4. A calculation of derivatives shows ulu 5 1, and the proposition follows. This completes the
proof.ã9(kDx) 5 O(sin(kDx)) and b̃9(kDx) 5 O((Da/a2 )21/2 sin

u cos(kDx/2)). If the trigonometric factors are bounded
away from zero, then we conclude that the interval has The behavior of the eigenvalues is illustrated in Fig. 3.2.

We consider a two-layer model for which Dp̃1 / p̃2 5 0.25,width O(Da/a2 )5/4. On the other hand, if the roots of pa

and pb intersect for kDx 5 6f, then a separate calculation Dp̃2/p̃2 5 0.75, and Da/a2 5 0.01. We also assume that
Dt and Dx are chosen so that the Courant number is n 5for this case shows that the interval has width O(Da/a2 )5/8.

For the intersection points nearest l 5 1, we have kDx 5 c1 Dt/Dx 5 0.8. We computed eigenvalues of (3.20) for
values of kDx varying from 2f to f in increments ofO(Da/a2 )1/2 and sin u 5 O(Da/a2 )1/2, and the estimate of

interval width can be improved to O(Da/a2 )7/4. f/1000, and also for the values of kDx for which ã(kDx)
5 b̃(kDx). For each kDx, we then determined the maximumIn the preceding discussion, it has been assumed that

the disks D1 , D1 , D2 , and D2 do not intersect the real axis. of the absolute values of the eigenvalues. These maximum
absolute values are plotted versus kDx in the upper frameEquivalently, we have assumed that the roots of pa(l)pb (l)

are located sufficiently far from the real axis that the roots in Fig. 3.2. The lower frame shows plots of ã(kDx) and
b̃(kDx). The small circles on the horizontal axis in theof the perturbed polynomial p cannot be real. We now

consider the case where at least one of the disks intersects upper frame indicate the horizontal coordinates of the
points where ã(kDx) 5 b̃(kDx). Narrow spikes appear inthe real axis. Our analysis shows that perturbed roots can-

not leave the unit circle near 11, but roots can leave the the upper frame at every other point for which ã(kDx) 5
b̃(kDx), but elsewhere the graph is exactly flat. This behav-unit circle near 21. These roots exist for values of kDx

lying in extremely narrow intervals lying to one side of ior is consistent with the preceding analysis. Close-up views
of the spikes show that they are smooth and intersect thepoints for which b̃(kDx) 5 22. Compared to the cases

discussed earlier, the intervals are far narrower, and the horizontal axis at right angles.
The preceding analysis implies the existence of very nar-roots are much closer to the unit circle. Some sample num-

bers are described later during the discussion of Fig. 3.2. row spikes near points where b̃ 5 22. Such spikes do not
appear in the figure, and they also do not appear whenThis case is highly unlikely to be significant in practice.

We now assemble the preceding results into a summary kDx is sampled in increments of f/20000. Further experi-
mentation shows that these spikes have widths on the orderof the stability properties of the one-dimensional, baro-

tropic-baroclinic algorithm defined in (3.19). of 1026, and the largest such spike has height 1.00004, which
would not be visible with the vertical scaling used in the

PROPOSITION 3.5. If the Courant–Friedrichs–Lewy con-
figure. These spikes are mentioned here only for the sake

dition n 5 c1 Dt/Dx , 1 is satisfied, then all solutions of the
of completeness.

difference equation (3.19) are bounded as n R 1y, except
Higdon and Bennett [8] analyzed the splitting of Bleck

for values of kDx lying in a finite number of very narrow
and Smith [1] in the same setting considered here. In

intervals. Unbounded solutions are found in neighborhoods
that case the plots of eigenvalues also show sharp spikes.

of every other point for which ã(kDx) 5 b̃(kDx). If
However, between the spikes the graphs remain above 1ukDxu 5 f for such a point, then the neighborhood has width
except for finitely many values of kDx, and the spikes are

O(Da/a2 )5/8; if ukDxu , f, then the width is O(Da/a2 )5/4 ;
higher; in [8] the maximum magnitude of eigenvalues is

if kDx is near 0, then the estimate can be improved to
1 1 O(Da/a2 )1/2, but in the present analysis the maximum

O(Da/a2 )7/4.
magnitude of 1 1 O(Da/a2 )3/4.

As noted in (3.25), ã(kDx) 5 b̃(kDx) if and only if theRemainder of proof. The roots of the characteristic
polynomial, which have just been discussed, are eigenval- roots of the polynomials pa and pb coincide. The roots of

these polynomials indicate the time dependence, in theues of the problem (3.20). This eigenvalue problem arose
from considering solutions of (3.19) that have the form form ln, of solutions of the baroclinic and barotropic sub-

systems, respectively. Coincidence of roots then occursvn 5 lnq, where q is a nonzero vector having four compo-
nents. If kDx lies in one of the narrow neighborhoods when these subsystems have the same time dependence

on the coarse time grid that is associated with the baroclinicdescribed in Proposition 3.5 then there exist roots l for



42 HIGDON AND DE SZOEKE

FIG. 3.2. Behavior of eigenvalues. The top frame shows the maximum of the absolute values of the eigenvalues for the algorithm (3.19), as a
function of kDx for ukDxu # f. Spikes are found in narrow neighborhoods of every other point for which the roots of the polynomials pa(l) and
pb(l) coincide; these roots coincide if and only if ã(kDx) 5 b̃(kDx), where ã and b̃ are the coefficients in the linear terms in pa(l) and pb(l). These
coefficients are plotted in the lower frame. The slowly varying function is ã. In this example, the model parameters are Dp̃1/p̃2 5 0.25, Dp̃2/p̃2 5

0.75, Da/a2 5 0.01, and n 5 c1 Dt/Dx 5 0.8.

equations. Since the barotropic variables typically vary 3.5. Leapfrog
more quickly with respect to t than do the baroclinic vari-

Now suppose that the baroclinic equations are discret-
ables, the coincidence of roots involves the aliasing of fast

ized with respect to t by using the leapfrog scheme instead
barotropic motions to slowly varying motions on a coarse

of the forward–backward method that has been used up to
time grid. The spikes appearing in Fig. 3.2 can be interpre-

this point. In the present section we show that the resulting
ted as a kind of resonance that occurs between the baro-

algorithm has stability properties that are very similar to
clinic and barotropic subsystems. This resonance is appar-

those obtained above.
ently related to the inexactness of the projections onto the

As in the preceding analysis, we discretize with respect
external mode given by the vertical averaging defined in

to x by using centered second-order differences on a stag-
(2.3), (2.11), and (3.4). However, this behavior occurs

gered grid, and we apply a Fourier transform with respect
only at every other point where the baroclinic and baro-

to x. The leapfrog approximation to the linearized baro-
tropic subsystems have the same time dependence, and

clinic system (3.8) can then be written in the form
away from these points the algorithm is stable and non-
dissipative.

In the preceding analysis, the wavenumber k has been d̂ n11 5 d̂ n21 2 2(iKc1 Dt)
c1

(3.29a)
treated as a continuous variable. However, in practice the
wavenumber is discrete, since x is discrete. The spikes in
Fig. 3.2 can affect a computation only if one of the discrete

c1
5

c1
2 2(iKc1 Dt)(d̂ n 1 ĥn), (3.29b)

û91
n

û91
n11 û91

n21

where K is defined in (3.15). As before, we assume that

values of kDx lies within the width of such a spike. Unless
kDx lands in the center of that interval, the corresponding
value of ulu will be less than the value implied by the
preceding discussions. the barotropic equations are solved exactly with respect
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to t for tn # t # tn11 , with the solution given in (3.17). The
r(l) 5 FS1 2

sin u

u
D (l4 2 2l3 1 l2)coupled barotropic-baroclinic system can then be written

in the form
1 2(1 2 cos u)l3G. (3.31b)

E1vn11 5 E0vn 1 E21vn21, (3.30a)

Here, u 5 Kc0 Dt and n 5 c1 Dt/Dx. From (3.12), we have
c 5 O(Da/a2 ).where vn is defined in (3.18),

The roots of the factor l2 2 b̃l 1 1 in (3.31a) are exp(iu)
and exp(2iu). The factor l4 2 ãl2 1 1 is the characteristic
polynomial for the leapfrog scheme, as applied to the
purely baroclinic equations obtained by deleting the term
involving n from (3.14). A calculation shows that thisE1 5 1

1 0 0 0

0 1 0 0

2W1 0 1 0

2W2 0 0 1
2 , (3.30b)

scheme is stable and nondissipative provided n , As ; for
this scheme, the maximum permissible time step is half
that of the forward–backward method. We then conclude
that if n , As, then all of the roots of the polynomial

(l4 2 ãl2 1 1)(l2 2 b̃l 1 1)
E0 51

0 22iKc1 Dt 0 0

22iKc1 Dt 0 0 22iKc1 Dt

V1 0 Y11 Y12

V2 0 Y21 Y22

2, (3.30c)
lie on the unit circle, for each kDx.

The remaining question is whether the term in (3.31a)
involving r(l) causes the roots to leave the unit circle. If
a complex number l is a root of p6 (l) 5 0, then so is

E21 5 diag(1, 1, 0, 0), and Y(kDx), V(kDx), and W(kDx) 1/l; this follows from the symmetry of the coefficients of
are defined in (3.17). The matrices E1 , E0 , and E21 are the powers of l in p6 (l). An analysis similar to that in
functions of kDx. Section 3.4 shows that the roots must lie exactly on the

We now analyze solutions of (3.30) having the form unit circle, except possibly for values of kDx lying in very
vn 5 lnq, where l is a complex scalar and q is a vector narrow neighborhoods of points where roots of (l4 2
having four components. If l ? 0 for such a solution, then ãl2 1 1) and (l2 2 b̃l 1 1) coincide or where the roots
(l2E1 2 lE0 2 E21 )q 5 0; for this case, nonzero vectors of the latter intersect the real axis. Because of the similarity
q can be found if and only if with the previous case, we omit the details. If the roots

coincide, then exp(iu) and exp(2iu) are roots of (l4 2
ãl2 1 1); equivalently, exp(2iu) and exp(22iu) are rootsp8 (l) ; det(l2E1 2 lE0 2 E21 ) 5 0.
of (e2 2 ãe 1 1). The roots therefore coincide if and only
if ã(kDx) 5 2 cos(2u).

A calculation shows p8 (l) 5 l2p6 (l), where p6 is a polyno- The behavior of the eigenvalues l is illustrated in Fig.
mial of degree six. The superfluous factor l2 arises from 3.3. In this example we use the same parameters as in Fig.
the fact that the barotropic equations involve only two 3.2, except that the Courant number is chosen to be n 5
time levels, whereas the matrix formulation (3.30) involves 0.4. The circles on the horizontal axis denote the values
three levels. Nontrivial solutions of the form lnq thus corre- of kDx for which ã(kDx) 5 2 cos(2u). The spikes in the
spond to roots of the characteristic polynomial p6 , which figure are found at every other such point; this is analogous
can be written in the form to the behavior found previously for the forward–

backward method.

p6 (l) 5 (l4 2 ãl2 1 1)(l2 2 b̃l 1 1)
(3.31a) 4. THE CASE OF TWO HORIZONTAL DIMENSIONS

2 c ? 16n 2 sin2(kDx/2)r(l),
In this section we extend the preceding analysis to the

case of two horizontal dimensions and a rotating reference
where frame. An additional issue encountered here is the treat-

ment of the Coriolis terms. We consider one method for
treating these terms, and for this example we show thatã(kDx) 5 2 2 4(Kc1 Dt)2 5 2 2 16n2 sin2(kDx/2)
the splitting algorithm has stability properties similar to
those of the one-dimensional case.b̃(kDx) 5 2 cos u



44 HIGDON AND DE SZOEKE

FIG. 3.3. Behavior of eigenvalues when the leap frog method is used to discretize the baroclinic equations with respect to time. The same
parameters are used as in Fig. 3.2, except that n 5 0.4.

4.1. Governing Equations where c0 and c are defined in (3.11)–(3.12). The baroclinic
equations are

As in Section 3, we consider linearized dynamics in a
fluid with two layers and a flat lower boundary. The linear-
ization of the system (2.1), as applied to the present set- ­u91

­t
2 fv91 1 c2

1
­d
­x

5 2c2
1

­h
­x

(4.3a)ting, is

­v91

­t
1 fu91 1 c2

1
­d
­y

5 2c2
1

­h
­y

(4.3b)
­ur

­t
2 fvr 5 2

­Mr

­x
, r 5 1, 2, (4.1a)

­d
­t

1
­u91

­x
1

­v91

­y
5 0, (4.3c)­vr

­t
1 fur 5 2

­Mr

­y
, r 5 1, 2, (4.1b)

where c1 is defined in (3.9), andM1 5 M2 1 p1 Da (4.1c)

­

­t
(Dpr ) 1 Dp̃r S­ur

­x
1

­vr

­yD5 0, r 5 1, 2. (4.1d)
d(x, y, t) 5

Dp91(x, y, t)

Dp̃1

.

In the following analysis of numerical discretization, weHere, ur (x, y, t) and vr (x, y, t) denote the x- and y-compo-
use potential vorticity and the divergence of velocity asnents of velocity, respectively, in layer r ; and the quantities
dependent variables instead of the velocity componentsMr and Dpr depend on (x, y, t). Otherwise, the notation
listed above. This is due to the following conservationis the same as in Section 3. The Coriolis parameter f is
principle. Let z(x, y, t) 5 ­v/­x 2 ­u/­y denote the baro-assumed constant.
tropic vorticity; a manipulation of the system (4.2) thenThe barotropic and baroclinic equations are obtained
yieldsthrough a process that is very similar to that used in Section

3.1. In the present case, the barotropic equations are
­

­t
(z 2 fh) 5 0. (4.4)

­u
­t

2 f v 1 c2
0

­h
­x

5 2cc2
0

­d
­x

(4.2a)
Up to a multiplicative constant, the quantity z 2 fh is a
linearization of the potential vorticity that is conserved in­v

­t
1 f u 1 c2

0
­h
­y

5 2cc2
0

­d
­y

(4.2b) solutions of the constant-density shallow water equations
via vortex stretching (Gill [6], Pedlosky [12]). A similar
analysis shows that the quantity v9x 2 u9y 2 f d is conserved­h

­t
1

­u
­x

1
­v
­y

5 0, (4.2c)
in solutions of the baroclinic system (4.3). Discrete ana-
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logues of these principles will lead to considerable simpli- We next express the barotropic system (4.5) in terms of
divergence and potential vorticity. Letfications of the analysis given in Sections 4.2 and 4.3.

4.2. Computational Algorithm D̂(k, l, t) 5 iKû 1 iLv̂
We now apply the time discretization described in Sec-

denote a discretization of the horizontal velocity diver-tion 2.3 to the barotropic-baroclinic system (4.2)–(4.3).
gence ­u/­x 1 ­v/­y, and letThe algorithm is stated directly in terms of Fourier trans-

forms with respect to x and y. For definiteness, we use
P̂(k, l, t) 5 iKv̂ 2 iLû 2 f0ĥa spatial discretization based on the C-grid of Arakawa

[7, 10]. To construct this grid, partition the spatial domain
into rectangular grid cells; here we assume Dx 5 Dy 5 h. denote a discretization of the quantity z 2 fh in (4.4) that
For each cell, values of h and d are associated with the is a constant multiple of the linearized potential vorticity.
center of the cell, values of u and u9 are taken at the Some manipulations of the system (4.5) then yield
midpoints of the sides corresponding to fixed x, and values
of v and v9 are taken at the midpoints of the sides corre- ­D̂

­t
2 f0 P̂ 2 s2

0 ĥ 5 cg2
0 d̂ (4.8a)sponding to fixed y. Alternate spatial discretizations can

be handled by using different definitions of the symbols K
and L in (4.6). ­P̂

­t
5 0 (4.8b)

As in Section 3, we assume that the barotropic equations
are discretized with respect to space but are solved exactly ­ĥ

­t
1 D̂ 5 0, (4.8c)with respect to t on the time interval tn # t # tn11 . Let

û(k, l, t), v̂(k, l, t), ĥ(k, l, t), and d̂(k, l, t) denote the Fourier
transforms of u, v, h, and d with respect to (x, y) for fixed

wheret. The transformed barotropic system, for tn # t # tn11 ,
then has the form

g2
0 5 c2

0(K2 1 L2 )
(4.9)

s2
0 5 c2

0(K 2 1 L2 ) 1 f 2
0 .­û

­t
2 f0 v̂ 1 iKc2

0 ĥ 5 2iKcc2
0 d̂(k, l, t) (4.5a)

The quantity s0 is the frequency of oscillation in the system­v̂
­t

1 f0 û 1 iLc2
0 ĥ 5 2iLcc2

0 d̂(k, l, t) (4.5b) (4.8), and g0 is the frequency that would be obtained if
rotation were absent. Equation (4.8b) expresses the conser-
vation of discrete potential vorticity P̂, in analogy to (4.4).­ĥ

­t
1 iKû 1 iLv̂ 5 0, (4.5c)

Differentiation of Eqs. (4.8a) and (4.8c) yields second-
order forced wave equations for D̂ and ĥ, which are solved

where by standard methods. Next impose the initial conditions
D̂ 5 D̂n, ĥ 5 ĥn, and P̂ 5 P̂n at time t 5 tn , and then let
t 5 tn11 to obtain the solution at the new time level. AiK 5 i

sin(kh/2)
(h/2)

, iL 5 i
sin(lh/2)

(h/2)
(4.6)

calculation shows that the solution of (4.8) at time tn11 is

in analogy to (3.15),

1
ĥn11

D̂n11/s0

P̂n11/s0

251
cos u 2sin u 2( f0/s0 )(1 2 cos u)

sin u cos u ( f0/s0 ) sin u

0 0 1
21

ĥn

D̂n/s0

P̂n/s0

2f0 5 f cos(kh/2) cos(lh/2), (4.7)

and d̂(k, l, t) denotes the linear interpolant

d̂(k, l, t) 5 d̂n(k, l) 1 (t 2 tn )(d̂n11(k, l) 2 d̂n(k, l))/Dt.
1 c(g0/s0 )21

cos u 2 (sin u)/u

sin u 2 (1 2 cos u)/u

0
2 d̂n (4.10)

The quantity cos(kh/2) cos(lh/2) in (4.7) arises from the
fact that the values of u and v are not associated with
the same points on the staggered C-grid used here; in the
momentum equations involving ­u/­t and ­v/­t, the Cori- 1 c(g0/s0 )21

(sin u)/u 2 1

(1 2 cos u)/u

0
2 d̂n11,

olis terms 2f v and f u are approximated by four-point
averages.
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where u 5 s0 Dt. The quantities u, f0/s0, and (g0/s0)2 in where f 5 f0 Dt. In (4.15b), eliminate the terms involving
d̂n11 and ĥn11 by using (4.15a). Further manipulation yields(4.10) can be written in terms of trigonometric functions

of the quantities kh and lh and of the dimensionless param- P̂9
n11

5 P̂9
n, where

eters c0/fh and fDt. Due to periodicity, we can assume
ukhu # f and ulhu # f. The sign of s0 is not determined in P̂9

n
5 ẑ9

n
2 f0 (1 1 a2f2 )d̂n 1 afD̂9

n. (4.16)
(4.9); however, (4.10) is invariant under a change of sign
of s0 .

In this calculation, the terms of the form f0 (1 1 a2f2)d̂Next consider the baroclinic equations. In the algorithm
arise from a substitution involving the continuity equationoutlined in Section 2.3, the baroclinic continuity equation
(4.11) when written in the form d̂ n11 5 d̂ n 2 DtD̂9

n.is advanced explicitly, the barotropic equations are then
The quantity P̂9

n in (4.16) can be written in the formsolved, and finally the baroclinic momentum equations are
P̂9

n
5 ẑ9

n
2 f0 d̂n 1 O(Dt). This quantity is conservedadvanced with a variation on a backward method that

exactly by the present computational algorithm, and it isincludes a predictor–corrector step for the nonlinear and
a consistent approximation to the linearized potential vor-Coriolis terms. When this algorithm is applied to the linear-
ticity z9 2 fd 5 v9x 2 u9y 2 fd that is conserved in theized baroclinic system (4.3), the discrete continuity equa-
continuous baroclinic system (4.3).tion is

After the divergence equation (4.15a) is written in terms
of P̂9

n, the discrete baroclinic equations can be summa-(4.11)d̂n11 5 d̂n 2 Dt(iKû91
n

1 iLv̂91
n),

rized as

the prediction step for the momentum equations is

û91
pred

5 û91
n

1 Dt( f0 v̂91
n

2 iKc2
1 (d̂n11 1 ĥn11 )) 1 1 0 0

2ru/r 1 0

0 0 121
d̂n11

D̂9
n11/s0

P̂9
n11/s0

2v̂91
pred

5 v̂91
n

1 Dt(2f0 û91
n

2 iLc2
1 (d̂n11 1 ĥn11 )),

(4.12)

and the correction step is

5 1 1 2u 0

( f0/s0 )f(1 1 a2f2 ) 1 2 2af2 f

0 0 1
21

d̂n

D̂9
n/s0

P̂9
n/s0

2û91
n11

5 û91
n

1 Dt [f0 (av̂91
pred

1 bv̂91
n )

2 iKc2
1 (d̂n11 1 ĥn11 )]

v̂91
n11

5 v̂91
n

1 Dt [2f0 (aû91
pred

1 bû91
n )

(4.13)

1 1 0

ru/r

0 2 ĥn11, (4.17a)
2 iLc2

1 (d̂n11 1 ĥn11 )],

where a and b are constants with a 1 b 5 1.
whereWe now express the system (4.11)–(4.13) in terms of

divergence and potential vorticity. Let

r(kh, lh) 5 c(g0/s0 )2 5 Sc1

c0
D2 Dp̃1

Dp̃2
Sg0

s0
D2

5 O(Da/a2 ) ! 1D̂9 n(k, l) 5 iKû91
n

1 iLv̂91
n

(4.14)
ẑ9 n(k, l) 5 iKv̂91

n
2 iLû91

n

(4.17b)

denote horizontal discretizations of divergence and vortic-
cf. (3.12)), r 5 D p̃1/D p̃2 , and u 5 s0 Dt.ity, respectively. In (4.13), replace û91

pred and v̂91
pred by the

We now combine the barotropic system (4.10) and baro-values given in (4.12). Some manipulations of the resulting
clinic system (4.17) into a single vector equation. Letsystem then yield

D̂9 n11 5 (1 2 af2)D̂9 n 1 fẑ9 n

cn (k, l) 5 Sĥn D̂n

s0

P̂n

s0
d̂n D̂9

n

s0

P̂9
n

s0
DT

1 (K 2 1 L2)c2
1Dt(d̂ n11 1 ĥ n11) (4.15a)

ẑ9 n11 5 (1 2 af2)ẑ9 n 2 fD̂9 n

denote a column vector consisting of six unknowns. In the
2 af(K 2 1 L2)c2

1Dt(d̂ n11 1 ĥ n11), (4.15b) system (4.10), use the continuity equation d̂n11 5 d̂n 2
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DtD̂9
n to eliminate d̂n11. The coupled barotropic-baroclinic ĥ. A calculation shows that the characteristic polynomial

for this system issystem can then be written in the form

E1 cn11 5 E0 cn, (4.18a)
(l 2 1) Fl2 2 S2 2 2af2 2

ru 2

r D l 1 (1 2 af2)2 1 f2G.

(4.19)where

A comparison with (4.6), (4.9), and (4.17b) reveals

ru2

r
5 4n 2 [(sin kh/2)2 1 (sin lh/2)2],

E1 51
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

2ru/r 0 0 2ru/r 1 0

0 0 0 0 0 1
2 (4.18b) where n 5 c1 Dt/h denotes the baroclinic Courant number.

The root l1 5 1 of (4.19) corresponds to solutions that are
constant with respect to time; it follows from the structure
of the matrices in (4.17a) that these solutions are a conse-
quence of the conservation of discrete potential vorticity
(4.16).

Let l2 and l3 denote the roots of the quadratic factorand
in (4.19). If these roots are complex conjugates, then

ul2 u2 5 ul3 u2 5 l2 l2 5 l2 l3 5 (1 2 af2 )2 1 f2,

and analyzing the stability of the purely baroclinic system
reduces to studying the magnitude of the quantity (1 2

E0 51
cos u 2sin u 2f(1 2 cos u)/u

sin u cos u f(sin u)/u

0 0 1

0 0 0

0 0 0

0 0 0

af2 )2 1 f2. A calculation shows that l2 and l3 are complex
conjugates if

2n2 [(sin kh/2)2 1 (sin lh/2)2 ]
(4.20a)

, 1 2 af2 1 Ï(1 2 af2)2 1 f2.

If the inequality (4.20a) is satisfied for all (k, l), and if
in addition

2r(1 2 cos u) r(u 2 sin u) 0

r sin u 2r(1 2 cos u) 0

0 0 0

1 2u 0

f2(1 1 a2f2)/u 1 2 2af2 f

0 0 1
2 . (4.18c) Ï(1 2 af2 )2 1 f2 # 1 (4.20b)

for all (k, l), then the purely baroclinic system is stable.
In the case where f 5 0 (i.e., no rotation), (4.20a) is satisfied
for all (k, l) if and only if n , 1/Ï2.

The magnitude of the eigenvalues is illustrated in Fig.
4.1. It is assumed that (4.20a) holds, so that ul2 u 5 ul3 u 5The matrices E1 and E0 are functions of (kh, lh). In (4.18c),
Ï(1 2 af2 )2 1 f2. The figure shows a contour plot of ul2uthe quantity u appears as a denominator; this does not
as a function of (a, f) for 0 # a # 1 and 0 # f # 1. Forcause a singularity, as uf/u u 5 u f0/s0u # 1.
fixed (k, l), the set of all (a, f) for which ul2u # 1 is the
set of all (a, f) for which the purely baroclinic algorithm

4.3. Stability Analysis
is stable; this set will be regarded as the stability region
for that algorithm. Most of the right half of Fig. 4.1 isWe now examine the stability of the preceding algo-

rithm. In this discussion we use the same general frame- contained in this stability region. The boundary of the
region is characterized by a 5 1/(1 1 Ï1 2 f2); for exam-work as in Sections 3.3 and 3.4.

We begin with the purely baroclinic system that is ob- ple, if f 5 0.1, then the corresponding value of a is approxi-
mately 0.5013.tained from (4.17a) by deleting the forcing term involving
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form that expresses the conservation of discrete potential
vorticity (cf. (4.8b), (4.16)), the calculation of this determi-
nant reduces immediately to the 4 3 4 case. We obtain

p(l) 5 (l 2 1)2 [pa (l)pb (l) 1 «l2 ], (4.21a)

where

pa(l) 5 l22[2 2 2af2 2 ru 2/r 1 r2u(u 2 sin u)/r]l

1 (1 2 af2 )2 1 f2

(4.21b)
pb(l) 5 l2 2 (2 cos u)l 1 1

«(kh, lh) 5 22(r2/r)u sin u(1 2 cos u) 5 O(Da/a2 )2.

The coefficients in the polynomial p are functions of (kh,
lh) for ukhu # f and ulhu # f.

The factor (l 2 1)2 corresponds to the equations in
FIG. 4.1. Contour plot of absolute values of eigenvalues for the purely (4.18) that express the conservation of discrete barotropic

baroclinic system. This plot excludes the root l 5 1 which results from the and baroclinic potential vorticity. The quadratic polyno-
conservation of potential vorticity. The two remaining roots are complex

mial pb(l) is associated with the barotropic subsystem. Theconjugates, and their modulus is a function of (a, f). Here, a is the
factor pa(l) is the same as the quadratic factor in theweighting coefficient for the predicted values in (4.12)–(4.13), and f 5

f0 Dt 5 fDt cos(kh/2) cos(lh/2). characteristic polynomial (4.19) for the purely baroclinic
system, except for the term involving r2 5 O(Da/a2 )2.
This term represents some of the coupling between the
barotropic and baroclinic subsystems, and the remainder

The quantity f is defined by f 5 f0 Dt 5 fDt cos(kh/2) of the coupling is represented by the term «l2. For later
cos(lh/2) (cf. 4.7)). Due to the convexity of the stability reference, we also write the characteristic polynomial in
region, if (a, f) is in the region when k 5 l 5 0, then (a, the form
f) is in the region for all (k, l). If k 5 l 5 0, then the
discrete baroclinic system (4.11)–(4.13) reduces to a pre-

p(l) 5 (l 2 1)2q(l), (4.22a)dictor–corrector method for the system of ordinary differ-
ential equations ­u91/­t 5 fv91 , ­v91/­t 5 2fu91 , which de-

wherescribes inertial oscillations. The preceding discussion thus
shows that the purely baroclinic algorithm is stable if the

q(l) 5 pa(l)pb (l) 1 «l2. (4.22b)condition (4.20a) is satisfied for all (k, l) and if the parame-
ter a and the time step Dt are chosen so that the predictor–
corrector method is stable when applied to inertial oscilla- In the following discussion, we examine the roots of the
tions. polynomial q.

This predictor–corrector scheme was also discussed by The roots of pb are exp(6iu) and thus lie on the unit
Wang and Ikeda [14] during an analysis of time-stepping circle. The roots of pa can be analyzed in the same manner
schemes for inertial oscillations in linearized shallow water as for the purely baroclinic system. In the present case the
(single-layer) models. In that analysis it was assumed that timestep restriction (4.20a) is modified by a term of order
the solutions are constant in space, so that k 5 l 5 0. If O(r2 ) ! 1. Subject to that modified restriction, the
a 5 0.5, then this method reduces to the classical Heun roots of pa are complex conjugates with modulus
scheme [10], which is weakly unstable. An explicit treat- Ï(1 2 af2 )2 1 f2. We assume that a and fDt are chosen
ment of the Coriolis terms is obtained when a 5 0, as so that this modulus is at most 1, for all (k, l).
indicated by (4.13); this method is also unstable. The pre- The term «l2 represents a small perturbation of the
ceding analysis shows that the predictor–corrector method polynomial pa(l)pb(l), and we wish to examine the effects
provides a stable treatment of the Coriolis terms if the of this perturbation. If the roots of pa and pb are well
parameter a is chosen suitably. separated, then an argument similar to that in Lemma

Next consider the coupled barotropic-baroclinic system 3.3 shows that the roots of the polynomial pa(l)pb(l) are
(4.18). The characteristic polynomial for that system is perturbed by a magnitude of at most O(«) 5 O(Da/a2 )2.

If two roots coincide or nearly coincide, then this estimatep(l) 5 det(lE1 2 E0 ). Because the system is written in a
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FIG. 4.2. Eigenvalues for the coupled barotropic-baroclinic system (4.18). These plots show locations of values of (kh, lh) for which ulu . 1.
Here, kh and lh are sampled in increments of f/200. The horizontal and vertical axes correspond to kh and lh, respectively, for 0 , kh # f and
0 , lh # f ; the labels on the axes are array indices. The left frame shows the points for which maxulu . 1 1 1024, and the right frame shows
the points for which maxulu . 1 1 1028. Model parameters are n 5 c1 Dt/h 5 0.5, fDt 5 0.1, a 5 0.51, Da/a2 5 0.01, Dp̃1/p̃2 5 0.25, and
Dp̃2/p̃2 5 0.75.

breaks down, and the roots are perturbed by at most c1/fh 5 5. The quantity c1/f is the baroclinic Rossby radius,
so the present choice of parameters corresponds to fiveO(Ï«) 5 O(Da/a2 ).

The direction of the perturbation determines whether grid intervals per baroclinic Rossby radius. In the weighted
average that appears in the predictor–corrector methodthe eigenvalues leave the unit disk. However, the argument

used in Section 3.4 cannot be used here, as the constant for the Coriolis terms, we use a 5 0.51. According to the
earlier discussion, the purely baroclinic algorithm is thenterm in p is not exactly equal to 1 in the present case.

Instead, we compute numerical values of eigenvalues for stable; in particular, the magnitude Ï(1 2 af2 )2 1 f2

of the roots of pa varies between 1 and approximatelyan example.
We consider a two-layer model for which Dp̃1 / p̃2 5 0.25, 0.999913 as kh and lh vary.

With the above choices of parameters, we compute ei-Dp̃2 / p̃2 5 0.75, and Da/a2 5 0.01. We also assume that the
time and space steps are chosen so that fDt 5 0.1 and the genvalues of the problem lE1 w 5 E0 w, where E0 and E1

are given in (4.18). The matrices E0 and E1 are functionsbaroclinic Courant number is n 5 c1 Dt/h 5 0.5. The
Courant number can be written in the form n 5 (c1/fh) of (kh, lh) for ukhu # f and ulhu # f. Due to symmetries,

we can restrict attention to the domain 0 # kh # f, 0 #( fDt); with the present choice of parameters, we then have

FIG. 4.3. Cross section of Fig. 4.2 corresponding to kh 5 lh. The vertical coordinate is the maximum of the absolute values of eigenvalues. The
horizontal coordinate is kh, with kh sampled in increments of f/18000. The model parameters are the same as in Fig. 4.2. Five spikes are shown
in the plot; the short vertical lines located at the axis labels are tick marks. This figure illustrates how the curved patterns of dots in Fig. 4.2 represent
the locations of extremely thin walls. These walls are the higher-dimensional analogues of the spikes seen in Figs. 3.2 and 3.3.
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FIG. 5.1. Large-scale flow in the top layer. The arrows represent the time-averaged total velocity u 5 u 1 u9 in the top layer; the velocity
vectors are shown only for every tenth grid point, and the reference vector has units of meters per second. The curves are contours of time-averaged
total pressure p 5 (1 1 h)p9 at the bottom of the top layer. The contours are in units of 104 Pascals, which corresponds roughly to one meter of depth.

lh # f. For a finite set of (kh, lh), we compute the maximum a high-resolution plot along the ray for which kh 5 lh. In
this plot the vertical coordinate is the maximum of theof the absolute values of the eigenvalues.

For the graphs shown in Fig. 4.2, we use values of kh absolute values of the eigenvalues, and the horizontal coor-
dinate is kh, with kh sampled in increments of f/18000.and lh varying independently from f/200 to f in increments

of f/200. In these graphs the horizontal and vertical axes The five arcs in Fig. 4.2 thus represent the locations of
thin curving walls rising upward from the (kh, lh) plane;correspond to kh and lh, respectively, although the labels

on the axes are array indices. The dots in the left frame the spikes in Fig. 4.3 are cross sections of those walls.
These walls are higher dimensional analogues of the spikesin Fig. 4.2 indicate the locations of those values of (kh, lh)

for which max ulu . 1 1 1024 ; the right frame indicates encountered in the analysis of the one-dimensional case
given in Section 3.the locations for which max ulu . 1 1 1028. These points

lie along five arcs in the (kh, lh) plane.
The coefficients in the characteristic polynomial (4.21) 5. NUMERICAL COMPUTATIONS

are smoothly varying functions of (kh, lh). If the values of
(kh, lh) are restricted to rays through the origin in the Here we outline the results of a numerical simulation

involving a nonlinear ocean model that employs the baro-(kh, lh) plane, then the behavior of the roots must vary
smoothly with the directions of the rays. In order to illus- tropic-baroclinic splitting developed in the present paper.

In this computation, the spatial domain occupies a spher-trate further the properties of the roots, we can therefore
examine the behavior along one such ray. Figure 4.3 shows ical sector, with the latitude varying from 10.188 N to 64.548
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N and the longitude varying over a range of 54.368. Spheri- to solve the baroclinic continuity equation. However, no
time filtering is used; geophysical fluid calculations oftencal coordinates are used, with a horizontal grid spacing of

0.188 in both dimensions. The bottom of the fluid domain use time smoothing at each time step in order to suppress
numerical noise [2, 7], but this procedure is not employedis assumed level. The fluid consists of three layers having

specific volumes of 0.975 3 1023, 0.974 3 1023, and in the present computation.
The computation was run for 3750 days of simulated0.973 3 1023 m3/kg and initial thickness of 300, 700, and

3000 m, respectively. No mass exchange between the layers time. Snapshots of flow fields at various fixed times showed
stable behavior. In particular, the computations showed theis permitted. The system is driven by a steady zonal (east–

west) wind stress of the form tf 5 t0 cos(2f(u 2 37.36)/ development of an anticyclonic subtropical gyre, a cyclonic
subpolar gyre, and an intense western boundary current.54.36), with t0 5 0.1 N m22 ; the wind stress is applied to

the upper layer as a body force. The baroclinic time step Superimposed on these large-scale, slowly varying features
were various shorter-period disturbances.is 2000 s, and the barotropic time step is 40 s. In the

predictor–corrector scheme analyzed in Section 4, the Figures 5.1 and 5.2 show the large scale patterns in the
flow. In order to show these features more clearly, wecoefficient a is chosen to be 0.51.

Physical dissipation is represented by a horizontal viscos- suppress the transient disturbances by computing time
averages of the final computed fields over the last 375 daysity term having coefficient 100 m2 s21. This value is chosen

in order to resolve adequately the Munk boundary layer of the simulation; this averaging is very different from the
process of reducing numerical noise by time-smoothing atalong the western boundary. In addition, some numerical

dissipation is generated by an upwind method that is used each time step during the course of the computation. In

FIG. 5.2. Large-scale flow in the second layer. The arrows represent the time-averaged velocity in the second layer, and the curves are contours
of time-averaged total pressure at the bottom of the second layer.
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FIG. 5.3. Close-up view of the flow near the western boundary at day 3750. The arrows represent the instantaneous vertically-averaged velocity
u ; velocity vectors are shown at every other grid point. The curves are contours of total pressure at the bottom of the fluid. The units of pressure
are the same as in Figs. 5.1 and 5.2.

Fig. 5.1, the arrows show the time-averaged total velocity 6. SUMMARY AND CONCLUSIONS
field u 5 u 1 u9 in the top layer, and the solid curves are

The goal of a barotropic-baroclinic time splitting is tocontours of the time-averaged total pressure p 5 (1 1 h)p9
separate the fast and slow motions into separate subsys-at the bottom of the top layer. Figure 5.2 shows the total
tems. However, if errors in the splitting cause the baroclinicvelocity field in the second layer and the total pressure at
system to admit significant energy in fast motions, thenthe bottom of the second layer. In the third layer, which
the algorithm could be unstable when the baroclinic equa-is not known here, the flow is relatively quiescent, except
tions are solved explicitly with long time steps.near the western boundary. Over much of the region, the

In the present paper we modify the splitting developed invelocity vectors align closely with the contours of pressure,
[1]. The main modification is in the barotropic momentumwhich indicates a near-geostrophic balance.
equation, which describes the time evolution of the verti-Figure 5.3 is a snapshot of the flow near the western
cally averaged velocity u. In [1] this equation is forced byboundary at day 3750. The arrows indicate the vertically
a pressure gradient that is equivalent to the one that ap-averaged velocity u, and the curves are contours of the
pears in the constant-density shallow water equations. Wetotal pressure at the bottom of the fluid. The figure shows
replace this term by =M , the vertical average of the Mont-numerous eddies that are generated due to shear instabili-
gomery potential. The gradient term in [1] is an approxima-ties in the western boundary current.
tion to =M ; the present formulation takes into accountThe general features seen in this simulation are to be
the density variations over the depth of the fluid.expected from the wind forcing used here. These numerical

We then show that this modification leads to major im-results suggest the practical stability of the proposed baro-
tropic-baroclinic time splitting. provements in stability. The present approach yields algo-



BAROTROPIC-BAROCLINIC TIME SPLITTING 53

4. R. E. Davis, Diapycnal mixing in the ocean: equations for large-scalerithms that are stable in the linearized case, except for
budgets, J. Phys. Oceanogr. 24, 777 (1994).wavenumbers that are confined to a finite number of ex-

5. J. K. Dukowicz and R. D. Smith, Implicit free-surface method fortremely small neighborhoods. This splitting yielded good
the Bryan–Cox–Semtner ocean model, J. Geophys. Res. C 99,

results in a numerical simulation involving nonlinearity, 7991 (1994).
level bottom topography, physically reasonable dissipa- 6. A. E. Gill, Atmosphere-Ocean Dynamics (Academic Press, San
tion, and no time filtering. Diego, 1982).

7. G. J. Haltiner and R. T. Williams, Numerical Prediction and Dynamic
Meteorology (Wiley, New York, 1980).ACKNOWLEDGMENTS

8. R. L. Higdon and A. F. Bennett, Stability analysis of operator splitting
for large-scale ocean modeling, J. Comput. Phys. 123, 311 (1996).We thank Andrew Bennett and Scott Springer for useful conversations

9. P. D. Killworth, D. Stainforth, D. J. Webb, and S. M. Paterson, Theregarding the matters discussed in this paper. We also thank Springer for
development of a free-surface Bryan–Cox–Semtner ocean model, J.performing the numerical computations described in Section 5. Higdon’s
Phys. Oceanogr. 21, 1333 (1991).work was supported by National Science Foundation Grant DMS-

10. F. Mesinger and A. Arakawa, Numerical Methods Used in Atmo-9407509. De Szoeke’s work was supported by National Science Founda-
spheric Models, GARP Publications Series No. 17, Vol. 1 (WMO-tion Grants OCE-9319892 and OCE-9402891.
ICSU Joint Organizing Committee, Geneva, 1976).

11. J. M. Oberhuber, Simulation of the Atlantic circulation with a coupled
REFERENCES sea ice—mixed layer—isopycnal general circulation model. Part I.

Model description, J. Phys. Oceanogr. 23, 808 (1993).
1. R. Bleck and L. T. Smith, A wind-driven isopycnic coordinate model 12. J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed. (Springer-Verlag,

of the north and equatorial Atlantic Ocean 1. Model development New York, 1987).
and supporting experiments, J. Geophys. Res. C 95, 3273 (1990).

13. A. J. Semtner, Finite-difference formulation of a world ocean model,
2. R. Bleck, C. Rooth, D. Hu, and L. T. Smith, Salinity-driven thermo- in Advanced Physical Oceanographic Numerical Modelling, edited

cline transients in a wind- and thermohaline-forced isopycnic coordi- by J. J. O’Brien (Reidel, Norwell, MA, 1986), p. 187.
nate model of the North Atlantic, J. Phys. Oceanogr. 22, 1486 (1992). 14. J. Wang and M. Ikeda, On inertial stability and phase error of time

3. K. Bryan, A numerical method for the study of the circulation of the integration schemes in ocean general circulation models, Mon.
Weather Rev., to appear.world ocean, J. Comput. Phys. 4, 347 (1969).


